Cours d'anglais gratuitsRecevoir 1 leçon gratuite chaque semaine // Créer un test
Connectez-vous !

Cliquez ici pour vous connecter
Nouveau compte
Des millions de comptes créés.

100% gratuit !
[Avantages]


Comme des milliers de personnes, recevez gratuitement chaque semaine une leçon d'anglais !



- Accueil
- Aide/Contact
- Accès rapides
- Lire cet extrait
- Livre d'or
- Nouveautés
- Plan du site
- Presse
- Recommander
- Signaler un bug
- Traduire cet extrait
- Webmasters
- Lien sur votre site



> Nos sites :
-Jeux gratuits
-Nos autres sites
   


Algorithme - 2nd

Cours gratuits > Forum > Forum maths || En bas

[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Algorithme - 2nd
Message de poket-short posté le 27-04-2012 à 11:12:17 (S | E | F)
bonjour voici le sujet : Lien internet


donc a) ; b) : c) ne me pose pas problème mais je n'arrive pas a completer l'algorithme d) !

Avec a); b) ;c) je peut juste tirer comme conclusion que dans le premier car a)abc sont alignés et que dans le deuxieme cas a,b,c sont aussi alignés mais P n'est pas egal a Q.
Je suis vraiment bloqué c'est pourqoi je sollicite votre aide
merci d'avance !


cordialement poket-short


Réponse: Algorithme - 2nd de steve1, postée le 27-04-2012 à 23:53:39 (S | E)
Bonsoir pocket-short.
Je comprends pourquoi tu as quelques difficultés à compléter l'algorithme d).
il se trouve que tu as commis une erreur à la question c).
Replace correctement les points A , B et C de la question c). Sont-ils alignés?

En fait , pour a)et b) A, B et C sont-ils alignés ? Les valeurs P et Q sont-elles égales ?
pour c) A ,B et C sont-ils alignés ? Les valeurs P et Q sont-elles égales ?

Tu devrais pouvoir compléter l'algorithme...
Et puis , rien ne t'empêche de regarder dans ton cours si une formule confirme ce résultat.
Car vérifier sur deux exemples ne constitue en rien une démonstration !

Bon courage.



Réponse: Algorithme - 2nd de poket-short, postée le 29-04-2012 à 17:16:14 (S | E)
merci beaucoup alors j'ai tout refait !

1. b) P=-6 Q=-6 donc P=Q
c) P-12 Q=-8 P n'est pas egal a Q

d) Si P=Q alors
[ A,B,C est aligné
[ sinon
[ A,B,C n'est pas aligné
Fin si

e)Le role de cet algorithme est de demontrer soit que A,B,C est aligné ou non
justification : Mab = (Yb-Ya)/(Xb-Xa)
Mac = (Yc-Ya)/(Xc-Xa)
Mabc= (Yb-Ya)/(Xb-Xa)=(Yc-Ya)/(Xc-Xa)
Mabc = (Yb-Ya)*(Xc-Xa)= (Yc-Ya)*(Xb-Xa)

or P = (Yb-Ya)*(Xc-Xa)
et Q = (Yc-Ya)*(Xb-Xa)

f) je l'ai fait avec algobox ! : Lien internet



2.b) Selon mon programe A,F,O sont alignés
D,F,E sont alignes
A,E,C sont alignes !


Merci beaucoup, j'espere avoir juste !



Réponse: Algorithme - 2nd de steve1, postée le 30-04-2012 à 00:14:43 (S | E)

C'est très bien , si ce n'est ta justification du e). Je ne comprends pas ce que représente Mab.
Peux-tu me répondre?

Pour t'aider , complète le théorème suivant:
Soit u et v deux vecteurs de coordonnées u(x,y) et v(x',y').
Alors u et v sont colinéaires si et seulement si ..... Complète en utilisant les coordonnées des vecteurs u et v.

Puis , exprime les coordonnées des vecteurs AB et AC avec A(xa;ya) , B(xb;yb) et C(xc;yc).
Ensuite , complète le corollaire suivant : A,B et C sont alignés si et seulement si les vecteurs AB et AC sont.....
Applique alors le premier théorème aux coordonnées des vecteurs AB et AC. ( En fait , c'est comme si tu as vecteur AB=u et vecteur AC=v). Quelle égalité obtiens-tu ?
Qu'en déduis-tu?

Pour la question f) , je ne suis pas spécialiste de algobox..
Et pour 2)b)



Réponse: Algorithme - 2nd de poket-short, postée le 30-04-2012 à 12:38:36 (S | E)
d’accord en faite j'ai appelé M le coefficient directeur étant donné que sa formule est (Yb-Ya)/(Xb-Xa) et que si le coefficient directeur de 3 point sont égaux alors ces 3 points sont alignés !



Réponse: Algorithme - 2nd de steve1, postée le 30-04-2012 à 17:39:58 (S | E)
Bonjour pocket-short,
L'idée est plutôt bonne mais c'est incorrect.

Déjà , il s'agit de coefficient directeur d'une droite, pas de points !

Ensuite , si les coefficients directeurs des droites (AB) et (AC) sont égaux alors on a bien prouvé que les points A , B et C sont alignés. C'est ton idée et c'est bien.
Cela dit , au vu de l'énoncé , il semblerait qu'on utilise plus les propriétés concernant les vecteurs.

Et on a bien , pour Xa différent de Xb et Xa différent de Xc ,
(Yb-Ya)/(Xb-Xa)=(Yc-Ya)/(Xc-Xa) équivalent à (Yb-Ya)*(Xc-Xa)= (Yc-Ya)*(Xb-Xa).Ce que tu utilises.

Mais pour autant (Yb-Ya)/(Xb-Xa)=(Yc-Ya)/(Xc-Xa) différent de (Yb-Ya)*(Xc-Xa)= (Yc-Ya)*(Xb-Xa).

Et donc tu ne peux pas écrire : Mabc= (Yb-Ya)/(Xb-Xa)=(Yc-Ya)/(Xc-Xa)
Mabc = (Yb-Ya)*(Xc-Xa)= (Yc-Ya)*(Xb-Xa).

Comprends ceci et si rien ne m'échappe , ce sera parfait.
Dans l'ensemble , bon travail




Réponse: Algorithme - 2nd de poket-short, postée le 30-04-2012 à 19:23:58 (S | E)
Merci beaucoup ! je vais tout reprendre !




[POSTER UNE NOUVELLE REPONSE] [Suivre ce sujet]


Cours gratuits > Forum > Forum maths


 


> INDISPENSABLES : TESTEZ VOTRE NIVEAU | GUIDE DE TRAVAIL | NOS MEILLEURES FICHES | Les fiches les plus populaires | Une leçon par email par semaine | Exercices | Aide/Contact

> INSEREZ UN PEU D'ANGLAIS DANS VOTRE VIE QUOTIDIENNE ! Rejoignez-nous gratuitement sur les réseaux :
Instagram | Facebook | Twitter | RSS | Linkedin | Email

> NOS AUTRES SITES GRATUITS : Cours de français | Cours de mathématiques | Cours d'espagnol | Cours d'italien | Cours d'allemand | Cours de néerlandais | Tests de culture générale | Cours de japonais | Rapidité au clavier | Cours de latin | Cours de provençal | Moteur de recherche sites éducatifs | Outils utiles | Bac d'anglais | Our sites in English

> INFORMATIONS : Copyright - En savoir plus, Aide, Contactez-nous [Conditions d'utilisation] [Conseils de sécurité] Reproductions et traductions interdites sur tout support (voir conditions) | Contenu des sites déposé chaque semaine chez un huissier de justice | Mentions légales / Vie privée | Cookies. [Modifier vos choix]
| Cours, leçons et exercices d'anglais 100% gratuits, hors abonnement internet auprès d'un fournisseur d'accès. | Livre d'or | Partager sur les réseaux |